
MULTIVARIATE PROBABILITY DISTRIBUTIONS

1. PRELIMINARIES

1.1. Example. Consider an experiment that consists of tossing a die and a coin at the same
time. We can consider a number of random variables defined on this sample space. We
will assign an indicator random variable to the result of tossing the coin. If it comes up
heads we will assign a value of one, and if it comes up zero we will assign a value of zero.
Consider the following random variables.

X1: The number of dots appearing on the die.
X2: The sum of the number of dots on the die and the indicator for the coin.
X3: The value of the indicator for tossing the coin.
X4: The product of the number of dots on the die and the indicator for the coin.

There are twelve sample points associated with this experiment.

E1 : 1H E2 : 2H E3 : 3H E4 : 4H E5 : 5H E6 : 6H

E7 : 1T E8 : 2T E9 : 3T E10 : 4T E11 : 5T E12 : 6T

Random variable X1 has six possible outcomes, each with probability 1
6 . Random vari-

able X3 has two possible outcomes, each with probability 1
2 . Consider the values of X2

for each of the sample points. The possible outcomes and the probabilities for X2 are as
follows.

TABLE 1. Probability of X2

Value of Random Variable Probability
1 1/12
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6
7 1/12

Date: August 9, 2004.
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1.2. Bivariate Random Variables. Now consider the intersection of X1 = 3 and X2 = 3.
We call this intersection a bivariate random variable. For a general bivariate case we write
this as P (X1 = x1, X2 = x2). We can write the probability distribution in the form of a
table as follows for the above example.

TABLE 2. Joint Probability of X1 and X2

X2

1 2 3 4 5 6 7

1 1
12

1
12 0 0 0 0 0

2 0 1
12

1
12 0 0 0 0

X1 3 0 0 1
12

1
12 0 0 0

4 0 0 0 1
12

1
12 0 0

5 0 0 0 0 1
12

1
12 0

6 0 0 0 0 0 1
12

1
12

For the example, P (X1 = 3, X2 = 3) = 1
12 , which is the probability of sample point E9.

2. PROBABILITY DISTRIBUTIONS FOR DISCRETE MULTIVARIATE RANDOM VARIABLES

2.1. Definition. If X1 and X2 be discrete random variables, the function given by

p(x1, x2) = P (X1 = x1, X2 = x2)

for each pair of values of (x1, x2) within the range of X1 and X2 is called the joint (or
bivariate) probability distribution for X1 and X2. Specifically we write

p(x1, x2) = P (X1 = x1, X2 = x2), −∞ < x1 < ∞, −∞ < x2 < ∞. (1)
In the single-variable case, the probability function for a discrete random variable X

assigns non-zero probabilities to a countable number of distinct values of X in such a way
that the sum of the probabilities is equal to 1. Similarly, in the bivariate case the joint
probability function p(x1, x2) assigns non-zero probabilities to only a countable number
of pairs of values (x1, x2). Further, the non-zero probabilities must sum to 1.

2.2. Properties of the Joint Probability (or Density) Function.

Theorem 1. If X1 and X2 are discrete random variables with joint probability function p(x1, x2),
then

(i) p(x1, x2) ≥ 0 for all x1, x2.
(ii)

∑
x1, x2

p(x1, x2) = 1 , where the sum is over all values (x1, x2) that are assigned non-
zero probabilities.
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Once the joint probability function has been determined for discrete random variables
X1 and X2, calculating joint probabilities involving X1 and X2 is straightforward.

2.3. Example 1. Roll a red die and a green die. Let

X1 = number of dots on the red die
X2 = number of dots on the green die

There are 36 points in the sample space.

TABLE 3. Possible Outcomes of Rolling a Red Die and a Green Die. (First
number in pair is number on red die.)

Green 1 2 3 4 5 6
Red

1 1 1 1 2 1 3 1 4 1 5 1 6
2 2 1 2 2 2 3 2 4 2 5 2 6
3 3 1 3 2 3 3 3 4 3 5 3 6
4 4 1 4 2 4 3 4 4 4 5 4 6
5 5 1 5 2 5 3 5 4 5 5 5 6
6 6 1 6 2 6 3 6 4 6 5 6 6

The probability of (1, 1) is 1
36 . The probability of (6, 3) is also 1

6 .
Now consider P (2 ≤ X1 ≤ 3, 1 ≤ X2 ≤ 2). This is given as

P (2 ≤ X1 ≤ 3, 1 ≤ X2 ≤ 2) = p(2, 1) + p(2, 2) + p(3, 1) + p(3, 2)

=
4
36

=
1
9

2.4. Example 2. Consider the example of tossing a coin and rolling a die from section 1.
Now consider P (2 ≤ X1 ≤ 3, 1 ≤ X2 ≤ 2). This is given as

P (2 ≤ X1 ≤ 4, 3 ≤ X2 ≤ 5) = p(2, 3) + p(2, 4) + p(2, 5)

+ p(3, 3) + p(3, 4) + p(3, 5)

+ p(4, 3) + p(4, 4) + p(4, 5)

=
5
36

2.5. Example 3. Two caplets are selected at random from a bottle containing three aspirin,
two sedative, and four cold caplets. If X and Y are, respectively, the numbers of aspirin
and sedative caplets included among the two caplets drawn from the bottle, find the prob-
abilities associated with all possible pairs of values of X and Y ?

The possible pairs are (0, 0), (0, 1), (1, 0), (1, 1), (0, 2, and (2, 0). To find the probability
associated with (1, 0), for example, observe that we are concerned with the event of getting
one of the three aspirin caplets, none of the two sedative caplets, and hence, one of the four
cold caplets. The number of ways in which this can be done is(

3
1

)(
2
0

)(
4
1

)
= 12
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and the total number of ways in which two of the nine caplets can be selected is(
9
2

)
= 36

Since those possibilities are all equally likely by virtue of the assumption that the selec-
tion is random, it follows that the probability associated with (1, 0) is 12

36 = 1
3 Similarly, the

probability associated with (1, 1) is (
3
1

)(
2
1

)(
4
1

)
36

=
6
36

=
1
6

and, continuing this way, we obtain the values shown in the following table:

TABLE 4. Joint Probability of Drawing Aspirin (X1) and Sedative Caplets (Y ).

x

0 1 2

0 1
6

1
3

1
12

y 1 2
9

1
6 0

2 1
36 0 0

We can also represent this joint probability distribution as a formula

p(x, y) =

(
3
x

)(
2
y

)(
4

2−x−y

)
36

, x = 0, 1, 2; y = 0, 1, 2; 0 ≤ (x + y) ≤ 2

3. DISTRIBUTION FUNCTIONS FOR DISCRETE MULTIVARIATE RANDOM VARIABLES

3.1. Definition of the Distribution Function. If X1 and X2 are discrete random variables,
the function given by

F (x1, x2) = P [X1 ≤ x1, X2 ≤ x2] =
∑

u1≤x1

∑
u2≤x2

p(u1, u2)
−∞ < x1 < ∞
−∞ < x2 < ∞ (2)

where p(u1, u2)is the value of the joint probability function of X1 and X2 at (u1, u2) is
called the joint distribution function, or the joint cumulative distribution of X1 and X2.
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3.2. Examples.

3.2.1. Example 1. Consider the experiment of tossing a red and green die where X1 is the
number of the red die and X2 is the number on the green die.

Now find F (2, 3) = P (X1 ≤ 2, X2 ≤ 3). This is given by summing as in the definition
(equation 2).

F (2, 3) = P [X1 ≤ 2, X2 ≤ 3] =
∑
u1≤2

∑
u2≤3

p(u1, u2)

= p(1, 1) + p(1, 2) + p(1, 3) + p(2, 1) + p(2, 2) + p(2, 3)

=
1
36

+
1
36

+
1
36

+
1
36

+
1
36

+
1
36

=
6
36

=
1
6

3.2.2. Example 2. Consider Example 3 from Section 2. The joint probability distribution is
given in Table 4 which is repeated here for convenience.

TABLE 4. Joint Probability of Drawing Aspirin (X1) and Sedative Caplets (Y ).

x

0 1 2

0 1
6

1
3

1
12

y 1 2
9

1
6 0

2 1
36 0 0

The joint probability distribution is

p(x, y) =

(
3
x

)(
2
y

)(
4

2−x−y

)
36

, x = 0, 1, 2; y = 0, 1, 2; 0 ≤ (x + y) ≤ 2

For this problem find F (1 , 2) = P (X ≤ 1, Y ≤ 2). This is given by
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F (1, 2) = P [X ≤ 1, Y ≤ 2] =
∑
u1≤1

∑
u2≤2

p(u1, u2)

= p(0, 0) + p(0, 1) + p(0, 2) + p(1, 0) + p(1, 1) + p(1, 2)

=
1
6

+
2
9

+
1
36

+
1
3

+
1
6

+ 0

=
6
36

+
8
36

+
1
36

+
12
36

+
6
36

=
33
36

4. PROBABILITY DISTRIBUTIONS FOR CONTINUOUS BIVARIATE RANDOM VARIABLES

4.1. Definition of a Joint Probability Density Function. A bivariate function with values
f(x1, x2) defined over the x1x2-plane is called a joint probability density function of the
continuous random variables X1 and X2 if, and only if,

P [(X1, X2) ∈ A] =
∫

A

∫
f(x1, x2) dx1 dx2 for any region A ∈ the x1x2 -plane (3)

4.2. Properties of the Joint Probability (or Density) Function in the Continuous Case.

Theorem 2. A bivariate function can serve as a joint probability density function of a pair of
continuous random variables X1 and X2 if its values, f(x1, x2) , satisfy the conditions

(i) f(x1, x2) ≥ 0 for−∞ < x1 < ∞, ∞ < x2 < ∞

(ii)
∫∞
−∞

∫∞
−∞ f(x1, x2)dx1 dx2 = 1

4.3. Example of a Joint Probability Density Function. Given the joint probability density
function

f(x1, x2) =

{
6x2

1x2 0 < x1 < 1, 0 < x2 < 1
0 elsewhere

of the two random variables, X1 and X2, find P [(X1, X2) ∈ A], where A is the region
{(x1, x2) | 0 < x1 < 3

4 , 1
3 < x2 < 2}.

We find the probability by integrating the double integral over the relevant region, i.e.,
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P
(
0 < X1 < 3

4 , 1
3 < X2 < 2

)
=
∫ 2

1
3

∫ 3
4

0
f(x1, x2) dx1 dx2

=
∫ 1

1
3

∫ 3
4

0
6x2

1x2 dx1 dx2 +
∫ 1

1
3

∫ 3
4

0
0 dx1 dx2

=
∫ 1

1
3

∫ 3
4

0
6x2

1x2 dx1 dx2

Integrate the inner integral first.

P
(
0 < X1 < 3

4 , 1
3 < X2 < 2

)
=
∫ 1

1
3

∫ 3
4

0
6x2

1x2 dx1 dx2

=
∫ 1

1
3

(
2x3

1x2

 3
4
0

)
dx2

=
∫ 1

1
3

(
(2)
(

3
4

)3

x2 − 0
)

dx2

=
∫ 1

1
3

(
(2)
(

27
64

)
x2

)
dx2

=
∫ 1

1
3

54
64

x2 dx2

Now integrate the remaining integral

P
(
0 < X1 < 3

4 , 1
3 < X2 < 2

)
=
∫ 1

1
3

54
64

x2 dx2

=
54
128

x2
2

1

1
3

=
(

54
128

)
(1)−

(
54
128

)(
1
9

)
=
(

54
128

)
(1)−

(
6

128

)
=

48
128

=
3
8
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This probability is the volume under the surface f(x1, x2) = 6x2
1x2 and above the rect-

angular set
{(x1, x2) | 0 < x1 < 3

4 , 1
3 < x2 < 1}

in the x1x2-plane.

4.4. Definition of a Joint Distribution Function. If X1 and X2 are continuous random
variables, the function given by

F (x1, x2) = P [X1 ≤ x1, X2 ≤ x2] =
∫ x2

−∞

∫ x1

−∞
f(u1, u2) du1 du2

−∞ < x1 < ∞
−∞ < x2 < ∞ (4)

where f(u1, u2) is the value of the joint probability function of X1 and X2 at (u1, u2) is
called the joint distribution function, or the joint cumulative distribution of X1 and X2.

If the joint distribution function is continuous everywhere and partially differentiable
with respect to x1 and x2 for all but a finite set of values then

f(x1, x2) =
∂2

∂x1∂x2
F (x1, x2) (5)

wherever these partial derivatives exist.

4.5. Properties of the Joint Distribution Function.

Theorem 3. If X1 and X2 are random variables with joint distribution function F (x1, x2), then
(i) F (−∞, −∞) = F (−∞, x2) = F (x1, −∞) = 0

(ii) F (∞, ∞) = 1
(iii) If a < b and c < d, then F (a, c) < F (b, d)
(iv) If a > x1 and b > x2, then F (a, b)− F (a, x2)− F (x1, b) + F (x1, x2) ≥ 0

Part (iv) follows because

F (a, b)− F (a, x2)− F (x1, b) + F (x1, x2) = P [x1 < X1 ≤ a, x2 < X2 ≤ b] ≥ 0

Note also that
F (∞, ∞) ≡ lim

x1→∞
lim

x2→∞
F (x1, x2) = 1

implies that the joint density function f(x1, x2) must be such that the integral of f(x1, x2)
over all values of (x1, x2) is 1.

4.6. Examples of a Joint Distribution Function and Density Functions.

4.6.1. Deriving a Distribution Function from a Joint Density Function. Consider a joint density
function for X1 and X2 given by

f(x1, x2) =

{
x1 + x2 0 < x1 < 1, 0 < x2 < 1
0 elsewhere

This has a positive value in the square bounded by the horizontal and vertical axes
and the vertical and horizontal lines at one. It is zero elsewhere. We will therefore need
to find the value of the distribution function for five different regions: second, third and
fourth quadrants, square defined by the vertical and horizontal lines at one, area between
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the vertical axis and a vertical line at one and above a horizontal line at one in the first
quadrant, area between the horizontal axis and a horizontal line at one and to the right
of a vertical line at one in the first quadrant, the area in the first quadrant not previously
mentioned. This can be diagrammed as follows.

-1 -0.5 0.25 0.5 0.75 1 1.25

0.25

0.5

0.75

1

1.25 III

III IV

We find the distribution function by integrating the joint density function.
If either x1 < 0 or x2 < 0, it follows that

F (x1, x2) = 0

For 0 < x1 < 1 and 0 < x2 < 1, we get

F (x1, x2) =
∫ x2

0

∫ x1

0
(s + t) ds dt =

1
2
x1x2(x1 + x2)

for x1 > 1 and 0 < x2 < 1, we get

F (x1, x2) =
∫ x2

0

∫ 1

0
(s + t)ds dt =

1
2
x2(x2 + 1)

for 0 < x1 < 1 and x2 > 1, we get

F (x1, x2) =
∫ 1

0

∫ x1

0
(s + t)ds dt =

1
2

x1(x1 + 1)
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and for x1 > 1 and x2 > 1 we get

F (x1, x2) =
∫ 1

0

∫ 1

0
(s + t) ds dt = 1

Because the joint distribution function is everywhere continuous, the boundaries be-
tween any two of these regions can be included in either one, and we can write

F (x1, x2) =



0 for x1 ≤ 0 or x2 ≤ 0

1
2x1x2(x1 + x2) for 0 < x1 < 1, 0 < x2 < 1

1
2x2(x2 + 1) for x1 ≥ 1, 0 < x2 < 1

1
2x1(x1 + 1) for 0 < x1 < 1, x2 ≥ 1

1 for x1 ≥ 1, x2 ≥ 1

4.7. Deriving a Joint Density Function from a Distribution Function. Consider two ran-
dom variables X1 and X2 whose joint distribution function is given by

F (x1, x2) =

{
(1− e−x1) (1− e−x2) for x1 > 0 and x2 > 0
0 elsewhere

Partial differentiation yields

∂2

∂x1∂x2
F (x1, x2) = e−(x1+x2)

For x1 > 0 and x2 > 0 and 0 elsewhere we find that the joint probability density of X1

and X2 is given by

f(x1, x2) =

{
e−(x1+x2) for x1 > 0 and x2 > 0
0 elsewhere

5. MULTIVARIATE DISTRIBUTIONS FOR CONTINUOUS RANDOM VARIABLES

5.1. Joint Density of Several Random Variables. The k-dimensional random variable
(X1, X2, . . . , Xk) is said to be a k-dimensional random variable if there exists a function
f(·, ·, . . . , ·) ≥ 0 such that

F (x1, x2, . . . , xk) =
∫ xk

−∞

∫ xk−1

−∞
. . .

∫ x1

−∞
f(u1, u2, . . . uk) du1 . . . duk (6)

for all (x1, x2, . . . , xk) where

F (x1, x2, x3, . . . ) = P [X1 ≤ x1, X2 ≤ x2, X3 ≤ x3, . . . ]
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The function f(·) is defined to be a joint probability density function. It has the following
properties:

f(x1, x2, . . . , xk) ≥ 0∫ ∞

−∞
. . .

∫ ∞

−∞
f(x1, x2, . . . , xk) dx1 . . . dxk = 1

(7)

In order to make it clear the variables over which f is defined it is sometimes written

f(x1, x2, . . . , xk) = fX1, X2, ... , Xk
(x1, x2, . . . , xk) (8)

6. MARGINAL DISTRIBUTIONS

6.1. Example Problem. Consider the example of tossing a coin and rolling a die from sec-
tion 1. The probability of any particular pair, (x1, x2) is given in the Table 5.

TABLE 5. Joint and Marginal Probabilities of X1 and X2.

X2

1 2 3 4 5 6 7

1 1
12

1
12 0 0 0 0 0 1

6

2 0 1
12

1
12 0 0 0 0 1

6

X1 3 0 0 1
12

1
12 0 0 0 1

6

4 0 0 0 1
12

1
12 0 0 1

6

5 0 0 0 0 1
12

1
12 0 1

6

6 0 0 0 0 0 1
12

1
12

1
6

1
12

1
6

1
6

1
6

1
6

1
6

1
12

Notice that we have summed the columns and the rows and placed this sums at the
bottom and right hand side of the table. The sum in the first column is the probability that
X2 = 1. The sum in the sixth row is the probability that X1 = 6. Specifically the column
totals are the probabilities that X2 will take on the values 1, 2, 3, . . . , 7. They are the values

g(x2) =
6∑

x1=1

p(x1, x2) for x2 = 1, 2, 3, . . . , 7

In the same way, the row totals are the probabilities that X1 will take on the values in its
space.

Because these numbers are computed in the margin of the table, they are called marginal
probabilities.
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6.2. Marginal Distributions for Discrete Random Variables. If X1 and X2 are discrete
random variables and p(x1, x2) is the value of their joint distribution function at (x1, x2),
the function given by

g(x1) =
∑
x2

p(x1, x2) (9)

for each x1 within the range of X1 is called the marginal distribution of X1. Correspond-
ingly, the function given by

h(x2) =
∑
x1

p(x1, x2) (10)

for each x2 within the range of X2 is called the marginal distribution of X2.

6.3. Marginal Distributions for Continuous Random Variables. If X and Y are jointly
continuous random variables, then the functions fX(·) and fY (·) are called the marginal
probability density functions. The subscripts remind us that fX is defined for the random
variable X . Intuitively, the marginal density is the density that results when we ignore
any information about the random outcome Y . The marginal densities are obtained by
integration of the joint density

fX(x) =
∫ ∞

−∞
fX, Y (x, y) dy

fY (y) =
∫ ∞

−∞
fX, Y (x, y) dx

(11)

In a similar fashion for a k-dimensional random variable X

fX1(x1) =
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
f(x1, x2, . . . ) dx2 dx3 . . . dxk

fX2(x2) =
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
f(x1, x2, . . . ) dx1 dx3 . . . dxk

(12)

6.4. Example 1. Let the joint density of two random variables x1 and x2 be given by

f(x1, x2) =

{
2x2e−x1 x1 ≥ 0, 0 ≤ x2 ≤ 1

0 otherwise

What are the marginal densities of x1 and x2?
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First find the marginal density for x1.

f1(x1) =
∫ 1

0
2x2e−x1 dx2

= x2
2e
−x1
1

0

= e−x1 − 0

= e−x1

Now find the marginal density for x2.

f2(x2) =
∫ ∞

0
2x2e−x1 dx1

= −2x2e−x1
∞

0

= 0−
(
−2x2e0

)
= 2x2e

0

= 2x2

6.5. Example 2. Let the joint density of two random variables x and y be given by

f(x, y) =

{
1
6(x + 4y) 0 < x < 2, 0 < y < 1

0 otherwise

What are the marginal densities of x and y?
First find the marginal density for x.

fX(x) =
∫ 1

0

1
6
(x + 4y) dy

=
1
6
(xy + 2y2)

1

0

=
1
6
(x + 2)− 1

6
(0)

=
1
6
(x + 2)
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Now find the marginal density for y.

fY (y) =
∫ 2

0

1
6
(x + 4y) dx

=
1
6

(
x2

2
+ 4xy

)2

0

=
1
6

(
4
2

+ 8y

)
− 1

6
(0)

=
1
6
(2 + 8y)

7. CONDITIONAL DISTRIBUTIONS

7.1. Conditional Probability Functions for Discrete Distributions. We have previously
shown that the conditional probability of A given B can be obtained by dividing the prob-
ability of the intersection by the probability of B, specifically,

P (A | B) =
P (A ∩B)

P (B)
(13)

Now consider two random variables X and Y . We can write the probability that X = x
and Y = y as

P (X = x | Y = y) =
P (X = x, Y = y)

P (Y = y)

=
p (x, y)
h(y)

(14)

provided P (Y = y) 6= 0, where p(x, y) is the value of joint probability distribution of X
and Y at (x, y) and h(y) is the value of the marginal distribution of Y at y. We can then
define a conditional distribution of X given Y = y as follows.

If p(x, y) is the value of the joint probability distribution of the discrete random variables X and
Y at (x, y) and h(y) is the value for the marginal distribution of Y at y, then the function given by

p (x | y) =
p (x, y)
h(y)

h(y) 6= 0 (15)

for each x within the range of X , is called the conditional distribution of X given Y = y.

7.2. Example for discrete distribution. Consider the example of tossing a coin and rolling
a die from section 1. The probability of any particular pair, (x1, x2) is given in the following
table where x1 is the value on the die and x2 is the sum of the number on the die and an
indicator that is one if the coin is a head and zero otherwise. The data is in the Table 5
repeated following.

Consider the probability that x1 = 3 given that x2 = 4. We compute this as follows.
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TABLE 5. Joint and Marginal Probabilities of X1 and X2.

X2

1 2 3 4 5 6 7

1 1
12

1
12 0 0 0 0 0 1

6

2 0 1
12

1
12 0 0 0 0 1

6

X1 3 0 0 1
12

1
12 0 0 0 1

6

4 0 0 0 1
12

1
12 0 0 1

6

5 0 0 0 0 1
12

1
12 0 1

6

6 0 0 0 0 0 1
12

1
12

1
6

1
12

1
6

1
6

1
6

1
6

1
6

1
12

For the example, P (X1 = 3, X2 = 3) = 1
12 , which is the probability of sample point E9.

p (x1 | x2) = p(3 | 4) =
p (x1, x2)

h(x2)
=

p(3, 4)
h(4)

=
1
12
1
6

=
1
2

We can then make a table for the conditional probability function for x1.
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TABLE 6. Probability Function for X1 given X2.

X2

1 2 3 4 5 6 7

1 1 1
2 0 0 0 0 0 1

6

2 0 1
2

1
2 0 0 0 0 1

6

X1 3 0 0 1
2

1
2 0 0 0 1

6

4 0 0 0 1
2

1
2 0 0 1

6

5 0 0 0 0 1
2

1
2 0 1

6

6 0 0 0 0 0 1
2 1 1

6

1
12

1
6

1
6

1
6

1
6

1
6

1
12

We can do the same for X2 given X1.

TABLE 7. Probability Function for X2 given X1.

X2

1 2 3 4 5 6 7

1 1
2

1
2 0 0 0 0 0 1

6

2 0 1
2

1
2 0 0 0 0 1

6

X1 3 0 0 1
2

1
2 0 0 0 1

6

4 0 0 0 1
2

1
2 0 0 1

6

5 0 0 0 0 1
2

1
2 0 1

6

6 0 0 0 0 0 1
2

1
2

1
6

1
12

1
6

1
6

1
6

1
6

1
6

1
12

7.3. Conditional Distribution Functions for Continuous Distributions.

7.3.1. Discussion. In the continuous case, the idea of a conditional distribution takes on
a slightly different meaning than in the discrete case. If X1 and X2 are both continuous,
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P (X1 = x1 | X2 = x2) is not defined because the probability of any one point is identically
zero. It make sense however to define a conditional distribution function, i.e.,

P (X1 ≤ x1 | X2 = x2)

because the value of X2 is known when we compute the value the probability that X1 is
less than some specific value.

7.3.2. Definition of a Continuous Distribution Function. If X1 and X2 are jointly continuous
random variables with joint density function f(x1, x2), then the conditional distribution
function of X1 given X2 = x2 is

F (x1 | x2) = P (X1 ≤ x1 | X2 = x2) (16)

We can obtain the unconditional distribution function by integrating the conditional one
over x2. This is done as follows

F (x1) =
∫ ∞

−∞
F (x1 | x2)fX2(x2) dx2 (17)

We can also find the probability that X1 is less than x1 is the usual fashion as

F (x1) =
∫ x1

−∞
fX1(t1) dt1 (18)

But the marginal distribution inside the integral is obtained by integrating the joint den-
sity over the range of x2. Specifically,

fX1 (t1) =
∫ ∞

−∞
fX1X2(t1, x2) dx2 (19)

This implies then that

F (x1) =
∫ ∞

−∞

∫ x1

−∞
fX1X2(t1, x2) dt1 dx2 (20)

Now compare the integrand in equation 20 with that in equation 17 to conclude that

F (x1 | x2) fX2(x2) =
∫ x1

−∞
fX1X2(t1, x2) dt1

⇒ F (x1 | x2) =
∫ x1

−∞

fX1X2(t1 , x2) dt1
fX2(x2)

(21)

We call the integrand in the second line of (21) the conditional density function of X1

given X2 = x2. We denote it by f(x1 | x2) orfX1|X2
(x1 | x2) . Specifically



18 MULTIVARIATE PROBABILITY DISTRIBUTIONS

Let X1 and X2 be jointly continuous random variables with joint probability density fX1X2(x1, x2)
and marginal densities fX1(x1) and fX2(x2), respectively. For any x2 such that fX2(x2) > 0 the
conditional probability density function of X1 given X2 = x2 , is defined to be

fX1|X2
(x1 | x2) =

fX1X2(x1, x2)
fX2(x2)

=
f(x1, x2)

f(x2)

(22)

And similarly

fX2|X1
(x2 | x1) =

fX1X2(x1, x2)
fX1(x1)

=
f(x1, x2)

f(x1)

(23)

7.4. Example. Let the joint density of two random variables x and y be given by

f(x, y) =

{
1
6(x + 4y) 0 < x < 2, 0 < y < 1

0 otherwise

The marginal density of x is fX(x) = 1
6(x + 2) while the marginal density of y is

fy(y) = 1
6(2 + 8y).

Now find the conditional distribution of x given y. This is given by

fX|Y (x | y) =
f(x, y)
f(y)

=
1
6(x + 4y)
1
6(2 + 8y)

=
(x + 4y)
(8y + 2)

for 0 < x < 2 and 0 < y < 1. Now find the probability that X ≤ 1 given that y = 1
2 .

First determine the density function when y = 1
2 as follows

f(x, y)
f(y)

=
(x + 4y)
(8y + 2)

=

(
x + 4

(
1
2

))(
8
(

1
2

)
+ 2
)

=
(x + 2)
(4 + 2)

=
(x + 2)

6

Then
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P
(
X ≤ 1 | Y = 1

2

)
=
∫ 1

0

1
6
(x + 2) dx

=
1
6

(
x2

2
+ 2x

)1

0

=
1
6

(
1
2

+ 2
)
− 0

=
1
12

+
2
6

=
5
12

8. INDEPENDENT RANDOM VARIABLES

8.1. Discussion. We have previously shown that two events A and B are independent if
the probability of their intersection is the product of their individual probabilities, i.e.

P (A ∩B) = P (A)P (B) (24)

In terms of random variables, X and Y , consistency with this definition would imply
that

P (a ≤ X ≤ b, c ≤ Y ≤ d) = P (a ≤ X ≤ b) P (c ≤ Y ≤ d) (25)

That is, if X and Y are independent, the joint probability can be written as the product
of the marginal probabilities. We then have the following definition.

Let X have distribution function FX(x), Y have distribution function FY (y), and X and Y
gave joint distribution function F (x, y). Then X and Y are said to be independent if, and only if,

F (x, y) = FX(X)FY (y) (26)

for every pair of real numbers (x, y). If X and Y are not independent, they are said to be
dependent.

8.2. Independence Defined in Terms of Density Functions.

8.2.1. Discrete Random Variables. If X and Y are discrete random variables with joint prob-
ability density function p(x, y) and marginal density functions pX(x) and pY (y), respec-
tively, then X and Y are independent if, and only if

pX,Y (x, y) = pX(x)pY (y)

= p(x)p(y)
(27)

for all pairs of real numbers (x, y).
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8.2.2. Continuous Bivariate Random Variables. If X and Y are continuous random variables
with joint probability density function f(x, y) and marginal density functions fX(x) and
fY (y), respectively then X and Y are independent if and only if

fX,Y (x, y) = fX(x)fY (y)

= f(x)f(y)
(28)

for all pairs of real numbers (x, y).

8.3. Continuous Multivariate Random Variables. In a more general context the variables
X1, X2, . . . , Xk are independent if, and only if

fX1, X2, ..., Xk
(x1, x2, . . . , xk) =

k∏
i=1

fXi(xi)

= fX1(x1)fX2(x2) . . . fXk
(xk)

= f(x1)f(x2) . . . f(xk)

(29)

In other words two random variables are independent if the joint density is equal to the
product of the marginal densities.

8.4. Examples.

8.4.1. Example 1 — Rolling a Die and Tossing a Coin. Consider the previous example where
we rolled a die and tossed a coin. X1 is the number on the die, X2 is the number of
the die plus the value of the indicator on the coin (H = 1). Table 7 is repeated here for
convenience. For independence p(x, y) = p(x)p(y) for all values of x1 and x2.

TABLE 7. Probability Function for X2 given X1.

X2

1 2 3 4 5 6 7

1 1
2

1
2 0 0 0 0 0 1

6

2 0 1
2

1
2 0 0 0 0 1

6

X1 3 0 0 1
2

1
2 0 0 0 1

6

4 0 0 0 1
2

1
2 0 0 1

6

5 0 0 0 0 1
2

1
2 0 1

6

6 0 0 0 0 0 1
2

1
2

1
6

1
12

1
6

1
6

1
6

1
6

1
6

1
12
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To show that the variables are not independent, we only need show that

p(x, y) 6= p(x)p(y)

Consider p(1, 2) = 1
2 . If we multiply the marginal probabilities we obtain(

1
6

)(
1
6

)
=

1
36

6= 1
2

8.4.2. Example 2 — A Continuous Multiplicative Joint Density. Let the joint density of two
random variables x1 and x2 be given by

f(x1x2) =

{
2x2e−x1 x1 ≥ 0, 0 ≤ x2 ≤ 1

0 otherwise

The marginal density for x1 is given by

f1(x1) =
∫ 1

0
2x2e−x1 dx2

= x2
2e
−x1
1

0

= e−x1 − 0

= e−x1

The marginal density for x2 is given by

f2(x2) =
∫ ∞

0
2x2e−x1 dx1

= −2x2e−x1
∞

0

= 0−
(
−2x2e0

)
= 2x2e0

= 2x2

It is clear the joint density is the product of the marginal densities.

8.4.3. Example 3. Let the joint density of two random variables x and y be given by

f(x, y) =


−3x2 log[y]

2
(
1 + log[2]− 2 log[4]

) 0 ≤ x ≤ 1, 2 ≤ y ≤ 4

0 otherwise
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First find the marginal density for x.

fX(x) =
∫ 1

0

−3x2 log[y]
2
(
1 + log[2]− 2 log[4]

) dy

=
−3x2y

(
log[y]− 1

)
2
(
1 + log[2]− 2 log[4]

)4

2

=
−3x24

(
log[4]− 1

)
+ 3x22

(
log[2]− 1

)
2
(
1 + log[2]− 2 log[4]

)
=

3x2
(
2
(
log[2]− 1

)
− 4
(
log[4]− 1

))
2
(
1 + log[2]− 2 log[4]

)
=

3x2
(
2 log[2]− 2− 4 log[4] + 4

)
2
(
1 + log[2]− 2 log[4]

)
=

3x2
(
2 log[2]− 4 log[4] + 2

)
2
(
1 + log[2]− 2 log[4]

)
=

3x2
(
2
(
1 + log[2]− 2 log[4]

))
2
(
1 + log[2]− 2 log[4]

)
= 3x2

Now find the marginal density for y.

fY (y) =
∫ 1

0

−3x2 log[y]
2
(
1 + log[2]− 2 log[4]

) dx

=
−x3 log[y]

2
(
1 + log[2]− 2 log[4]

)1

0

=
− log[y] + 0

2
(
1 + log[2]− 2 log[4]

)
=

− log[y]
2
(
1 + log[2]− 2 log[4]

)
It is clear the joint density is the product of the marginal densities.

8.4.4. Example 4. Let the joint density of two random variables X and Y be given by

f(x, y) =

{
3
5x2 + 3

10y

0 otherwise
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First find the marginal density for x.

fX(x) =
∫ 2

0

(
3
5
x2 +

3
10

y

)
dy

=
(

3
5
x2y +

3
20

y2

)2

0

=
(

6
5
x2 +

12
20

)
− 0

=
6
5
x2 +

3
5

Now find the marginal density for y.

fY (y) =
∫ 1

0

(
3
5
x2 +

3
10

y

)
dx

=
(

3
15

x3 +
3
10

xy

)1

0

=
(

3
15

+
3
10

y

)
− 0

=
(

1
5

+
3
10

y

)
The product of the marginal densities is not the joint density.

8.4.5. Example 5. Let the joint density of two random variables X and Y be given by

f(x, y) =

{
2e−(x+y) 0 ≤ x ≤ y, 0 ≤ y

0 otherwise

Find the marginal density of X .

fX(x) =
∫ ∞

x
2e−(x+y) dy

= −2e−(x+y)
∞

x

= −2e−(x+∞) −
(
−2e−(x+x)

)
= 0 + 2e−2x

= 2e−2x

The marginal density of Y is obtained as follows:
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fY (y) =
∫ y

0
2e−(x+y) dx

= −2e−(x+y)
y

0

= −2e−(y+y) −
(
−2e−(0+y)

)
= −2e−2y + 2e−y

= 2e−y
(
1− e−y

)
We can show that this is a proper density function by integrating it over the range of x

and y. ∫ ∞

0

∫ ∞

x
2e−(x+y) dy dx =

∫ ∞

0

[
−2e−(x+y)

∞
x

]
dx

=
∫ ∞

0
2e−2x dx

= −e−2x
∞

0

= −e−∞ −
[
−e0

]
= 0 + 1 = 1

Or in the other order as follows:∫ ∞

0

∫ y

0
2e−(x+y) dx dy =

∫ ∞

0

[
−2e−(x+y)

y

0

]
dy

=
∫ ∞

0

[
2e−y − 2e−2y

]
dy

= −2e−y
∞

0
−
[
−e−y

] ∞
0

=
[
−2e−∞ + 2

]
−
[
−e−∞ + 1

]
= [0 + 2]− [0 + 1]

= 2− 1 = 1

8.5. Separation of a Joint Density Function.

8.5.1. Theorem 4.

Theorem 4. Let X1 and X2 have a joint density function f(x1, x2) that is positive if, and only if,
a ≤ x1 ≤ b and c ≤ x2 ≤ d, for constants a, b, c and d; and f(x1, x2) = 0 otherwise. Then X1

and X2 are independent random variables if, and only if

f(x1, x2) = g(x1)h(x2)
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where g(x1) is a non-negative function of x1 alone and h(x2) is a non-negative function of x2

alone.

Thus if we can separate the joint density into two multiplicative terms, one depending
on x1 alone and one on x2 alone, we know the random variables are independent without
showing that these functions are actually the marginal densities.

8.5.2. Example. Let the joint density of two random variables x and y be given by

f(x, y) =

{
8x 0 ≤ x ≤ 1

2 , 0 ≤ y ≤ 1
0 otherwise

We can write f(x, y) as g(x)h(y), where

g(x) =

{
x 0 ≤ x ≤ 1

2

0 otherwise

h(y) =

{
8 0 ≤ y ≤ 1
0 otherwise

These functions are not density functions because they do not integrate to one.∫ 1/2

0
x dx =

1
2
x2
1/2

0
=

1
8
6= 1

∫ 1

0
8 dy = 8y

1

0
= 8 6= 1

The marginal densities as defined below do sum to one.

fX(x) =

{
8x 0 ≤ x ≤ 1

2

0 otherwise

fY (y) =

{
1 0 ≤ y ≤ 1
0 otherwise

9. EXPECTED VALUE OF A FUNCTION OF RANDOM VARIABLES

9.1. Definition.

9.1.1. Discrete Case. Let X = (X1, X2, . . . , Xk) be a k-dimensional discrete random vari-
able with probability function p(x1, x2, . . . , xk). Let g(·, ·, . . . , ·) be a function of the k
random variables (X1, X2, . . . , Xk). Then the expected value of g(X1, X2, . . . , Xk) is

E
[
g(X1, X2, . . . , Xk)

]
=
∑
xk

∑
xk−1

· · ·
∑
x2

∑
x1

g(x1, . . . , xk)p(x1, x2, . . . , xk) (30)
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9.1.2. Continuous Case. Let X = (X1, X2, . . . , Xk) be a k-dimensional random variable
with density f(x1, x2, . . . , xk). Let g(·, ·, . . . , ·) be a function of the k random variables
(X1, X2, . . . , Xk). Then the expected value of g(X1, X2, . . . , Xk) is

E [g(X1, X2 . . . , Xk)] =
∫

xk

∫
xk−1

. . .

∫
x2

∫
x1

g(x1, . . . , xk)fX1, ... , Xk
(x1, . . . , xk)dx1 . . . dxk

=
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
g(x1, . . . , xk)fX1, ... , Xk

(x1, . . . , xk) dx1 . . . dxk

(31)

if the integral is defined.
Similarly, if g(X) is a bounded real function on the interval [a, b] then

E(g(X)) =
∫ b

a
g(x) dF (x) =

∫ b

a
g dF (32)

where the integral is in the sense of Lebesque and can be loosely interpreted asf(x) dx.
Consider as an example g(x1, . . . , xk) = xi. Then

E [g(X1, . . . , Xk)] ≡ E[Xi] ≡
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
xif(x1, . . . , xk) dx1 . . . dxk

≡
∫ ∞

−∞
xifXi(xi) dxi

(33)

because integration over all the other variables gives the marginal density of xi.

9.2. Example. Let the joint density of two random variables x1 and x2 be given by

f(x1x2) =

{
2x2e−x1 x1 ≥ 0, 0 ≤ x2 ≤ 1

0 otherwise

The marginal density for x1 is given by

f1(x1) =
∫ 1

0
2x2e−x1 dx2

= x2
2e
−x1
1

0

= e−x1 − 0

= e−x1

The marginal density for x2 is given by
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f2(x2) =
∫ ∞

0
2x2e−x1 dx1

= −2x2e−x1
∞

0

= 0−
(
−2x2e0

)
= 2x2e0 = 2x2

We can find the expected value of X1 by integrating the joint density or the marginal
density. First with the joint density.

E [X1] =
∫ 1

0

∫ ∞

0
2x1x2e−x1 dx1 dx2

Consider the inside integral first. We will need a u dv substitution to evaluate the inte-
gral. Let

u = 2x1x2 and dv = e−x1 dx1

then

du = 2x2 dx1 and v = −e−x1

Then ∫ ∞

0
2x1x2e−x1 dx1 = −2x1x2e−x1

∞
0
−
∫ ∞

0
−2x2e−x1 dx1

= −2x1x2e−x1
∞

0
+
∫ ∞

0
2x2e−x1 dx1

= 0 +−2x2e−x1
∞

0

= 2x2

Now integrate with respect to x2.

E [X1] =
∫ 1

0
2x2 dx2

= x2
2

1

0
= 1

Now find it using the marginal density of x1. Integrate as follows

E [X1] =
∫ ∞

0
x1e−x1 dx1

We will need to use a u dv substitution to evaluate the integral. Let
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u = x1 and dv = e−x1 dx1

then

du = dx1 and v = −e−x1

Then

∫ ∞

0
x1e−x1 dx1 = −x1e−x1

∞
0
−
∫ ∞

0
−e−x1 dx1

= −x1e−x1
∞

0
+
∫ ∞

0
e−x1 dx1

= 0 +−e−x1
∞

0

= −e−∞ −−e0

= 0 + 1 = 1

We can likewise show that the expected value of x2 is 2
3 . Now consider E [x1x2]. We can

obtain it as

E [X1X2] =
∫ 1

0

∫ ∞

0
2x1x

2
2e
−x1 dx1 dx2

Consider the inside integral first. We will need a u dv substitution to evaluate the inte-
gral. Let

u = 2x1x
2
2 and dv = e−x1 dx1

then

du = 2x2
2 dx1 and v = −e−x1

Then ∫ ∞

0
2x1x

2
2e
−x1 dx1 = −2x1x

2
2e
−x1
∞

0
−
∫ ∞

0
−2x2

2e
−x1 dx1

= −2x1x
2
2e
−x1
∞

0
+
∫ ∞

0
2x2

2e
−x1 dx1

= 0 +−2x2
2e
−x1
∞

0

= 2x2
2

Now integrate with respect to x2.
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E [X1X2] =
∫ 1

0
2x2

2 dx2

=
2
3
x3

2

1

0

=
2
3

9.3. Properties of Expectation.

9.3.1. Constants.

Theorem 5. Let c be a constant. Then

E[c] ≡
∫

x

∫
y
cf(x, y) dy dx

≡ c

∫
x

∫
y
f(x, y) dy dx

≡ c

(34)

9.3.2. Theorem.

Theorem 6. Let g(X1, X2) be a function of the random variables X1 and X2 and let a be a
constant. Then

E[ag(X1, X2)] ≡
∫

x1

∫
x2

ag(x1, x2)f(x1, x2) dx2 dx1

≡ a

∫
x1

∫
x2

g(x1, x2)fx1, x2) dx2 dx1

≡ aE[g(X1, X2)]

(35)

9.3.3. Theorem.

Theorem 7. Let X and Y denote two random variables defined on the same probability space and
let f(x, y) be their joint density. Then

E[aX + bY ] =
∫

y

∫
x
(ax + by)f(x, y) dx dy

= a

∫
y

∫
x
xf(x, y) dx dy

+ b

∫
y

∫
x
yf(x, y) dx dy

= aE[X] + bE[Y ]

(36)
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In matrix notation we can write this as

E[a1a2]
[
x1

x2

]
= [a1a2]

[
E(x1)
E(x2)

]
= a1µ1 + a2µ2 (37)

9.3.4. Theorem.

Theorem 8. Let X and Y denote two random variables defined on the same probability space and
let g1(X, Y ), g2(X, Y ), g3(X, Y ), . . . , gk(X, Y ) be functions of (X, Y ). Then

E[g1(X, Y ) + g2(X, Y ) + · · ·+ gk(X, Y )]

= E[g1(X, Y )] + E[g2(X, Y )] + · · ·+ E[gk(X, Y )] (38)

9.3.5. Independence.

Theorem 9. Let X1 and X2 be independent random variables and g(X1) and h(X2) be functions
of X1 and X2, respectively. Then

E [g(X1)h(X2)] = E [g(X1)]E [h(X2)] (39)

provided that the expectations exist.

Proof: Let f(x1, x2) be the joint density of X1 and X2. The product g(X1)h(X2) is a
function of X1 and X2. Therefore we have

E
[
g(X1]h(X2]

]
≡
∫

x1

∫
x2

g(x1)h(x2)f(x1, x2) dx2 dx1

≡
∫

x1

∫
x2

g(x1)h(x2)fX1(x1)fX2(x2) dx2 dx1

≡
∫

x1

g(x1)fX1(x1)
[∫

x2

h(x2)fX2(x2) dx2

]
dx1

≡
∫

x1

g(x1)fX1(x1)
(
E [h(X2)]

)
dx1

≡ E [h(X2)]
∫

x1

g(x1)fX1(x1) dx1

≡ E [h(X2)]E [g(X1)]

(40)
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10. VARIANCE, COVARIANCE AND CORRELATION

10.1. Variance of a Single Random Variable. The variance of a random variable X with
mean µ is given by

var(X) ≡ σ2 ≡ E
[(

X − E(X)
)2]

≡ E
[
(X − µ)2

]
≡
∫ ∞

−∞
(x− µ)2f(x) dx

≡
∫ ∞

−∞
x2f(x) dx−

[∫ ∞

−∞
xf(x)dx

]2

≡ E(x2)− E2(x)

(41)

The variance is a measure of the dispersion of the random variable about the mean.

10.2. Covariance.

10.2.1. Definition. Let X and Y be any two random variables defined in the same proba-
bility space. The covariance of X and Y , denoted cov[X, Y ] or σX, Y , is defined as

cov[X, Y ] ≡ E [(X − µX)(Y − µY )]

≡ E[XY ]− E[µXY ]− E[XµY ] + E[µY µX ]

≡ E[XY ]− E[X]E[Y ]

≡
∫ ∞

−∞

∫ ∞

−∞
xyf(x, y) dx dy −

[∫ ∞

−∞

∫ ∞

−∞
xf(x, y) dx dy ·

∫ ∞

−∞

∫ ∞

−∞
yf(x, y) dx dy

]
≡
∫ ∞

−∞

∫ ∞

−∞
xyf(x, y) dx dy −

[∫ ∞

−∞
xfX(x, y) dx ·

∫ ∞

−∞
yfY (x, y) dy

]
(42)

The covariance measures the interaction between two random variables, but its numer-
ical value is not independent of the units of measurement of X and Y . Positive values of
the covariance imply that X and Y that X increases when Y increases; negative values
indicate X decreases as Y decreases.

10.2.2. Examples.

(i) Let the joint density of two random variables x1 and x2 be given by

f(x1x2) =

{
2x2e−x1 x1 ≥ 0, 0 ≤ x2 ≤ 1

0 otherwise
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We showed in Example 9.2 that

E [X1] = 1

E [X2] =
2
3

E [X1X2] =
2
3

The covariance is then given by

cov[X, Y ] ≡ E[XY ]− E[X]E[Y ]

≡ 2
3
− (1)

(
2
3

)
= 0

(ii) Let the joint density of two random variables x1 and x2 be given by

f(x1x2) =

{
1
6x1 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3

0 otherwise

First compute the expected value of X1X2 as follows.

E [X1X2] =
∫ 3

0

∫ 2

0

1
6
x2

1x2 dx1 dx2

=
∫ 3

0

(
1
18

x3
1x2

2

0

)
dx2

=
∫ 3

0

8
18

x2 dx2

=
∫ 3

0

4
9
x2 dx2

=
4
18

x2
2

3

0

=
36
18

= 2
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Then compute expected value of X1 as follows

E [X1] =
∫ 3

0

∫ 2

0

1
6
x2

1 dx1 dx2

=
∫ 3

0

(
1
12

x2
1

2

0

)
dx2

=
∫ 3

0

4
12

dx2

=
∫ 3

0

1
3
dx2

=
1
3
x2

3

0

=
3
3

= 1

Then compute the expected value of X2 as follows.

E [X2] =
∫ 3

0

∫ 2

0

1
6
x1x2 dx1 dx2

=
∫ 3

0

(
1
12

x2
1x2

2

0

)
dx2

=
∫ 3

0

4
12

x2 dx2

=
∫ 3

0

1
3
x2 dx2

=
1
6
x2

2

3

0

=
9
6

=
3
2

The covariance is then given by

cov[X, Y ] ≡ E[XY ]− E[X]E[Y ]

≡ 2−
(

4
3

)(
3
2

)
= 2− 2 = 0
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(iii) Let the joint density of two random variables x1 and x2 be given by

f(x1x2) =

{
3
8x1 0 ≤ x2 ≤ x1 ≤ 2

0 otherwise

First compute the expected value of X1X2 as follows.

E [X1X2] =
∫ 2

0

∫ 2

x2

3
8
x2

1x2 dx1 dx2

=
∫ 2

0

(
3
24

x3
1x2

2

x2

)
dx2

=
∫ 2

0

(
24
24

x2 −
3
24

x4
2

)
dx2

=
∫ 2

0

(
x2 −

1
8
x4

2

)
dx2

=
(

x2
2

2
− 1

40
x5

2

)2

0

=
4
2
− 32

40

= 2− 4
5

=
6
5

Then compute expected value of X1 as follows

E [X1] =
∫ 2

0

∫ x1

0

3
8
x2

1 dx2 dx1

=
∫ 2

0

(
3
8
x2

1x2

x1

0

)
dx1

=
∫ 2

0

3
8
x3

1 dx1

=
3
32

x4
1

2

0

=
48
32

=
3
2
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Then compute the expected value of X2 as follows.

E [X2] =
∫ 2

0

∫ 2

x2

3
8
x1x2 dx1 dx2

=
∫ 2

0

(
3
16

x2
1x2

2

x2

)
dx2

=
∫ 2

0

(
12
16

x2 −
3
16

x3
2

)
dx2

=
∫ 2

0

(
3
4
x2 −

3
16

x3
2

)
dx2

=
(

3
8
x2

2 −
3
64

x4
2

)2

0

=
12
8
− 48

64

=
96
64
− 48

64
=

48
64

=
3
4

The covariance is then given by

cov[X, Y ] ≡ E[XY ]− E[X]E[Y ]

≡ 6
5
−
(

3
2

)(
3
4

)
≡ 6

5
− 9

8

≡ 48
40
− 45

40

=
3
40

10.3. Correlation. The correlation coefficient, denoted by ρ[X, Y ], or ρX, Y of random vari-
ables X and Y is defined to be

ρX, Y =
cov[X, Y ]

σXσY
(43)

provided that cov[X, Y ], σX and σY exist, and σX , σY are positive. The correlation coeffi-
cient between two random variables is a measure of the interaction between them. It also
has the property of being independent of the units of measurement and being bounded
between negative one and one. The sign of the correlation coefficient is the same as the
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sign of the covariance. Thus ρ > 0 indicates that X2 increases as X1 increases and ρ = 1 in-
dicates perfect correlation, with all the points falling on a straight line with positive slope.
If ρ = 0, there is no correlation and the covariance is zero.

10.4. Independence and Covariance.

10.4.1. Theorem.

Theorem 10. If X and Y are independent random variables, then

cov[X, Y ] = 0. (44)

Proof:
We know from equation 42 that

cov[X, Y ] = E[XY ]− E[X]E[Y ] (45)

We also know from equation 39 that if X and Y are independent, then

E [g(X)h(Y )] = E [g(X)]E [h(Y )] (46)

Let g(X) = X and h(Y ) = Y to obtain

E [XY ] = E [X]E [Y ] (47)

Substituting into equation 45 we obtain

cov[X, Y ] = E[X]E[Y ]− E[X]E[Y ] = 0 (48)

The converse of Theorem 10 is not true, i.e., cov[X, Y ] = 0 does not imply X and Y are
independent.

10.4.2. Example. Consider the following discrete probability distribution.

x1

-1 0 1

-1
1
16

3
16

1
16

5
16

x2 0
3
16

0
3
16

6
16

=
3
8

1
1
16

3
16

1
16

5
16

5
16

6
16

=
3
8

5
16

1
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These random variables are not independent because the joint probabilities are not the
product of the marginal probabilities. For example

pX1X2 [−1, −1] =
1
16

6= pX1(−1)pX1(−1) =
(

5
16

)(
5
16

)
=

25
256

Now compute the covariance between X1 and X2. First find E[X1] as follows

E[X1] = (−1)
(

5
16

)
+ (0)

(
6
16

)
+ (1)

(
5
16

)
= 0

Similarly for the expected value of X2.

E[X2] = (−1)
(

5
16

)
+ (0)

(
6
16

)
+ (1)

(
5
16

)
= 0

Now compute E[X1X2] as follows

E[X1X2] = (−1)(−1)
(

1
16

)
+ (−1)(0)

(
3
16

)
+ (−1)(1)

(
1
16

)
+ (0)(−1)

(
3
16

)
+ (0)(0)(0) + (0)(1)

(
3
16

)
+ (1)(−1)

(
1
16

)
+ (1)(0)

(
3
16

)
+ (1)(1)

(
1
16

)
=

1
16
− 1

16
− 1

16
+

1
16

= 0

The covariance is then
cov[X, Y ] ≡ E[XY ]− E[X]E[Y ]

≡ 0− (0) (0) = 0

In this case the covariance is zero, but the variables are not independent.

10.5. Sum of Variances — var[a1x1 + a2x2].

var[a1x1 + a2x2] = a2
1 var(x1) + a2

2 var(x2) + 2a1a2 cov(x1, x2)

= a2
1σ

2
1 + 2a1a2σ12 + a2

2σ
2
2

= [a1, a2]

[
σ2

1 σ12

σ21 σ2
2

][
a1

a2

]

= var[a1, a2]
[
x1

x2

]
(49)
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10.6. The Expected Value and Variance of a Linear Functions of Random Variables.

10.6.1. Theorem.

Theorem 11. Let Y1, Y2, . . . , Yn and X1, X2, . . . , Xm be random variables with E[Yi] = µi and
E[Xj ] = ξi. Define

U1 =
n∑

i=1

aiYi and U2 =
m∑

j=1

bjXj (50)

for constants a1, a2, . . . , an and b1, b2, . . . , bm. Then the following three results hold:

(i) E[U1] =
∑n

i=1 aiµi

(ii) var[U1] =
∑n

i=1 a2
i var[Yi] + 2

∑∑
i<j

aiaj cov[Yi, Yj ]

where the double sum is over all pairs (i, j) with i < j.

(iii) cov[U1, U2] =
∑n

i=1

∑m
j=1 aibj cov[Yi, Xj ].

Proof:

(i) We want to show that

E[U1] =
n∑

i=1

aiµi

Write out the E[U1] as follows:

E[U1] = E

[
n∑

i=1

aiYi

]

=
n∑

i=1

E [aiYi]

=
n∑

i=1

aiE [Yi]

=
n∑

i=1

aiµi

(51)

using Theorems 6–8 as appropriate.
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(ii) Write out the var[U1] as follows:

var(U1) = E[U1 − E(U1)]2 = E

[
n∑

i=1

aiYi −
n∑

i=1

aiµi

]2

= E

[
n∑

i=1

ai(Yi − µi)

]2

= E

 n∑
i=1

a2
i (Yi − µi)2 +

∑∑
i6=j

aiaj(Yi − µi)(Yj − µj)


=

n∑
i=1

a2
i E(Yi − µi)2 +

∑∑
i6=j

aiajE[(Yi − µi)(Yj − µj)]

(52)

By definitions of variance and covariance, we have

var(U1) =
n∑

i=1

a2
i V (Yi) +

∑∑
i6=j

aiaj cov(Yi, Yj) (53)

Because

cov(Yi, Yj) = cov(Yj , Yi)

we can write

var(U1) =
n∑

i=1

a2
i V (Yi) + 2

∑∑
i<j

aiaj cov(Yi, Yj) (54)

Similar steps can be used to obtain (iii).
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(iii) We have

cov(U1, U2) = E {[U1 − E(U1)] [U2 − E(U2)]}

= E

( n∑
i=1

aiYi −
n∑

i=1

aiµi

) m∑
j=1

bjXj −
m∑

j=1

bjξj


= E


[

n∑
i=1

ai(Yi − µi)

] m∑
j=1

bj(xj − ξj)


= E

 n∑
i=1

m∑
j=1

aibi(Yi − µi)(Xj − ξj)


=

n∑
i=1

m∑
j=1

aibiE [(Yi − µi)(Xj − ξj)]

=
n∑

i=1

m∑
j=1

aibi cov(Yi, Xj)

(55)

11. CONDITIONAL EXPECTATIONS

11.1. Definition. If X1 and X2 are any two random variables, the conditional expectation
of g(X1), given that X2 = x2, is defined to be

E [g(X1) | X2] =
∫ ∞

−∞
g(x1)f(x1 | x2) dx1 (56)

if X1 and X2 are jointly continuous and

E [g(X1) | X2] =
∑
x1

g(x1)p(x1 | x2) (57)

if X1 and X2 are jointly discrete.

11.2. Example. Let the joint density of two random variables X and Y be given by

f(x, y) =

{
2 x ≥ 0, y ≥ 0, x + y ≤ 1
0 otherwise
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We can find the marginal density of y by integrating the joint density with respect to x
as follows

fY (y) =
∫ ∞

−∞
f(x, y) dx

=
∫ 1−y

0
2 dx

= 2x
1−y

0

= 2(1− y), 0 ≤ y ≤ 1

We find the conditional density of X given that Y = y by forming the ratio

fX|Y (x | y) =
f(x, y)
fY (y)

=
2

2(1− y)

=
1

(1− y)
, 0 ≤ x ≤ 1− y

We then form the expected value by multiplying the density by x and then integrating
over x.

E [X | Y ] =
∫ 1−y

0
x

1
(1− y)

dx

=
1

(1− y)

∫ 1−y

0
x dx

=
1

(1− y)

(
x2

2

1−y

0

)

=
1

(1− y)

(
(1− y)2

2

)
=

(1− y)
2

We can find the unconditional expected value of X by multiplying the marginal density
of y by this expected value and integrating over y as follows
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E[X] = EY

[
E[X | Y ]

]
=
∫ 1

0

1− y

2
(
2(1− y)

)
dy

=
∫ 1

0
(1− y)2 dy

=
−(1− y)3

3

1

0

= −1
3
[
(1− 1)3 − (1− 0)3

]
= −1

3
[0− 1]

=
1
3

We can show this directly by multiplying the joint density by x then and integrating
over x and y.

E[X] =
∫ 1

0

∫ 1−y

0
2x dx dy

=
∫ 1

0

(
x2
1−y

0

)
dy

=
∫ 1

0
(1− y)2 dy

=
∫ 1

0

−(1− y)3

3
dy

=
−(1− y)3

3

1

0

= −1
3
[
(1− 1)3 − (1− 0)3

]
= −1

3
[0− 1]

=
1
3

The fact that we can find the expected value of x using the conditional distribution of x
given y is due to the following theorem.
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11.3. Theorem.

Theorem 12. Let X and Y denote random variables. Then

E[X] = EY

[
EX|Y [X | Y ]

]
(58)

The inner expectation is with respect to the conditional distribution of X given Y and
the outer expectation is with respect to the distribution of Y .

Proof: Suppose that X and Y are jointly continuous with joint density F (X, y) and
marginal distributions fX(x) and fY (y), respectively. Then

E[X] =
∫ ∞

−∞

∫ ∞

−∞
xfXY (x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
xfX|Y (x | y)fY (y) dx dy

=
∫ ∞

−∞

[∫ ∞

−∞
xfX|Y (x | y) dx

]
fY (y) dy

=
∫ ∞

−∞
E [X | Y = y] fY (y) dy

= EY

[
EX|Y [X | Y ]

]

(59)

The proof is similar for the discrete case.

11.4. Conditional Variance.

11.4.1. Definition. Just as we can compute a conditional expected value, we can compute
a conditional variance. The idea is that the variance of the random variable X may be
different for different values of Y . We define the conditional variance as follows.

var[X | Y = y] = E
[
(X − E[X | Y = y])2 | Y = y

]
= E

[
X2 | Y = y

]
−
[
E[X | Y = y]

]2 (60)

We can write the variance of X as a function of the expected value of the conditional
variance. This is sometimes useful for specific problems.

11.4.2. Theorem.

Theorem 13. Let X and Y denote random variables. Then

var[X] = E
[
var[X | Y = y]

]
+ var

[
E[X | Y = y]

]
(61)
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Proof: First note the following three definitions

var[X | Y ] = E[X2 | Y ]−
[
E[X | Y ]

]2 (62a)

E
[
var[X | Y ]

]
= E

[
E[X2 | Y ]

]
− E

{[
E[X | Y ]

]2} (62b)

var
[
E[X | Y ]

]
= E

{[
E[X | Y ]

]2}− {E[E[X | Y ]
]}2 (62c)

The variance of X is given by

var[X] = E[X2]−
[
E[X]

]2 (63)

We can find the expected value of a variable by taking the expected value of the condi-
tional expectation as in Theorem 12. For this problem we can write E[X2] as the expected
value of the conditional expectation of X2 given Y . Specifically,

E[X2] = EY

{
EX|Y [X2 | Y ]

}
(64)

and

[
E[X]

]2 =
[
EY

{
EX|Y [X | Y ]

}]2 (65)

Write (63) substituting in (64) and (65) as follows

var[X] = E[X2]−
[
E[X]

]2
= EY

{
EX|Y [X2 | Y ]

}
−
[
EY

{
EX|Y [X | Y ]

}]2 (66)

Now subtract and add E
{[

E(X | Y )
]2} to the right hand side of equation 66 as follows

var[X] = EY

{
EX|Y [X2 | Y ]

}
−
[
EY

{
EX|Y [X | Y ]

}]2
= EY

{
EX|Y [X2 | Y ]

}
− E

{[
E(X | Y )

]2}
+ E

{[
E(X | Y )

]2}− [EY

{
EX|Y [X | Y ]

}]2 (67)

Now notice that the first two terms in equation 67 are the same as the right hand side
of equation 62b which is

(
E
[
var[X | Y ]

])
. Then notice that the second two terms in

equation 67 are the same as the right hand side of equation 62b which is
(
var
[
E[X | Y ]

])
.

We can then write var[X] as

var[X] = EY

{
EX|Y [X2 | Y ]

}
−
[
EY

{
EX|Y [X | Y ]

}]2
= E

[
var[X | Y ]

]
+ var

[
E[X | Y ]

] (68)
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11.4.3. Example. Let the joint density of two random variables X and Y be given by

f(x, y) =

{
1
4(2x + y) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise

We can find the marginal density of x by integrating the joint density with respect to y
as follows

fX(x) =
∫ ∞

−∞
f(x, y) dy

=
∫ 2

0

1
4
(2x + y) dy

=
1
4

(
2xy +

y2

2

)2

0

=
1
4

(
4x +

4
2

)
=

1
4

(4x + 2) , 0 ≤ x ≤ 1

(69)

We can find the marginal density of y by integrating the joint density with respect to x
as follows:

fY (y) =
∫ ∞

−∞
f(x, y) dy

=
∫ 1

0

1
4
(2x + y) dx

=
1
4
(
x2 + xy

)1

0

=
1
4

(1 + y) , 0 ≤ y ≤ 2

(70)
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We find the expected value of X by multiplying the conditional density by x and then
integrating over x

E[X] =
∫ 1

0

1
4
x (4x + 2) dx

=
∫ 1

0

1
4
(
4x2 + 2x

)
dx

=
1
4

(
4
3
x3 + x2

)1

0

=
1
4

(
4
3

+ 1
)

=
1
4

(
7
3

)
=

7
12

(71)

To find the variance of X , we first need to find the E[X2]. We do as follows

E[X2] =
∫ 1

0

1
4
x2 (4x + 2) dx

=
∫ 1

0

1
4
(
4x3 + 2x2

)
dx

=
1
4

(
x4 +

2
3
x3

)1

0

=
1
4

(
1 +

2
3

)
=

1
4

(
5
3

)
=

5
12

(72)

The variance of X is then given by

var(X) ≡ E
[
(X − E(X))2

]
≡ E(x2)− E2(x)

=
5
12
−
(

7
12

)2

=
5
12
− 49

144

=
60
144

− 49
144

=
11
144

(73)



MULTIVARIATE PROBABILITY DISTRIBUTIONS 47

We find the conditional density of X given that Y = y by forming the ratio

fX|Y (x | y) =
f(x, y)
fY (y)

=
1
4(2x + y)
1
4(1 + y)

=
(2x + y)
(1 + y)

(74)

We then form the expected value of X given Y by multiplying the density by x and then
integrating over x.

E [X | Y ] =
∫ 1

0
x

(2x + y)
(1 + y)

dx

=
1

1 + y

∫ 1

0
(2x2 + xy) dx

=
1

1 + y

(
2
3
x3 +

1
2
x2y

)1

0

=
1

(1 + y)

(
2
3

+
1
2
y

)

=

(
2
3 + y

2

)
(1 + y)

=
(4 + 3y)
(6 + 6y)

=
(

1
6

)
(4 + 3y)
(1 + y)

(75)
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We can find the unconditional expected value of X by multiplying the marginal density
of y by this expected value and integrating over y as follows:

E[X] = EY

[
E[X | Y ]

]
=
∫ 2

0

(4 + 3y)
(6 + 6y)

1
4
(1 + y) dy

=
1
4

∫ 2

0

(4 + 3y)(1 + y)
6(1 + y)

dy

=
1
24

∫ 2

0
(4 + 3y) dy

=
1
24

(
4y +

3
2
y2

)2

0

=
1
24

(8 + 6)

=
14
24

=
7
12

(76)

We find the conditional variance by finding the expected value of X2 given Y and then
subtracting the square of E[X | Y ].

E[X2 | Y ] =
∫ 1

0
x2 (2x + y)

(1 + y)
dx

=
1

1 + y

∫ 1

0
(2x3 + x2y) dx

=
1

1 + y

(
1
2
x4 +

1
3
x3y

)1

0

=
1

1 + y

(
1
2

+
1
3
y

)

=

(
1
2 + y

3

)
1 + y

=
(

1
6

)(
3 + 2y

1 + y

)

(77)
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Now square E[X | Y ].

E2 [X | Y ] =
((1

6

)(4 + 3y)
(1 + y)

)2

=
1
36

(4 + 3y)2

(1 + y)2

(78)

Now subtract equation 78 from equation 77

var[X | Y ] =
(

1
6

)(
3 + 2y

1 + y

)
− 1

36
(4 + 3y)2

(1 + y)2

=
(

1
36

)(
(18 + 12y)(1 + y)− (4 + 3y)2

(1 + y)2

)

=
(

12y2 + 30y + 18− (16 + 24y + 9y2)
36(1 + y)2

)

=
3y2 + 6y + 2
36(1 + y)2

(79)

For example, if y = 1, we obtain

var[X | Y = 1] =
3y2 + 6y + 2
36(1 + y)2


y=1

=
11
144

(80)

To find the expected value of this variance we need to multiply the expression in equa-
tion 80 by the marginal density of Y and then integrate over the range of Y .

E
[
var[X | Y ]

]
=
∫ 2

0

3y2 + 6y + 2
36(1 + y)2

1
4
(1 + y) dy

=
1

144

∫ 2

0

3y2 + 6y + 2
(1 + y)

dy

(81)

Consider first the indefinite integral.

z =
∫

3y2 + 6y + 2
(1 + y)

dy (82)

This integral would be easier to solve if (1 + y) in the denominator could be eliminated.
This would be the case if it could be factored out of the numerator. One way to do this is
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carry out the specified division.

3y + 3
1 + y 3y2 + 6y + 2

3y2 + 3y

3y + 2
3y + 3

−1

⇒ 3y2 + 6y + 2
1 + y

= (3y + 3)− 1
1 + y

(83)

Now substitute in equation 83 in to equation 82 as follows

z =
∫

3y2 + 6y + 2
(1 + y)

dy

=
∫ [

(3y + 3)− 1
1 + y

]
dy

=
3y2

2
+ 3y − log[1 + y]

(84)

Now compute the expected value of the variance as

E
[
var[X | Y ]

]
=

1
144

∫ 2

0

3y2 + 6y + 2
(1 + y)

dy

=
1

144

[
3y2

2
+ 3y − log[1 + y]

2

0

]
=

1
144

[(
12
2

+ 6− log[3]
)
− log[1]

]
=

1
144

[
12− log[3]

]
(85)

To compute the variance of E[X | Y ] we need to find EY

[(
E[X | Y ]

)2] and then subtract(
EY

[
E[X | Y ]

])2 .
First find the second term. The expected value of X given Y comes from equation 75.

E[X | Y ] =
(

1
6

)
(4 + 3y)
(1 + y)

(86)
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We found the expected value of E[X | Y ] in equation 76. We repeat the derivation here
by multiplying E[X | Y ] by the marginal density of Y and then integrating over the range
of Y .

EY

(
E[X | Y ]

)
=
∫ 2

0

(
1
6

)
(4 + 3y)
(1 + y)

1
4
(y + 1) dy

=
1
24

∫ 2

0
(4 + 3y) dy

=
1
24

(
4y +

3
2
y2

)2

0

=
1
24

(
8 +

12
2

)
=

1
24

(14)

=
7
12

(87)

Now find the first term

EY

((
E[X | Y ]

)2) =
∫ 2

0

(
1
36

)
(4 + 3y)2

(1 + y)2
1
4
(y + 1) dy

=
1

144

∫ 2

0

(4 + 3y)2

1 + y
dy

=
1

144

∫ 2

0

9y2 + 24y + 16
1 + y

dy

(88)

Now find the indefinite integral by first simplifying the integrand using long division.

9y2 + 24y + 16
1 + y

= 1 + y 9y2 + 24y + 16 (89)

Now carry out the division

9y + 15
1 + y 9y2 + 24y + 16

9y2 + 9y

15y + 16
15y + 15

1

⇒ 9y2 + 24y + 16
1 + y

= (9y + 15) +
1

1 + y

(90)
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Now substitute in equation 90 into equation 88 as follows

EY

((
E[X | Y ]

)2) =
1

144

∫ 2

0

9y2 + 24y + 16
1 + y

dy

=
1

144

∫ 2

0
9y + 15 +

1
1 + y

dy

=
1

144

[9y2

2
+ 15y + log[y + 1]

]2

0

=
1

144

[36
2

+ 30 + log[3]
]

=
1

144
[
48 + log[3]

]

(91)

The variance is obtained by subtracting the square of (87) from (91)

var
[
E[X | Y ]

]
= EY

((
E[X | Y ]

)2)+
(
EY

(
E[X | Y ]

))2

=
1

144
[
48 + log[3]

]
−
(

7
12

)2

=
1

144
[
48 + log[3]

]
− 49

144

=
1

144
[
log[3]− 1

]
(92)

We can show that the sum of (85) and (92) is equal to the var[X1] as in Theorem 13:

var[X] = E
[
var[X | Y = y]

]
+ var

[
E[X | Y = y]

]
=

1
144

[
log[3]− 1

]
+

1
144

[
12− log[3]

]
=

log[3]− 1 + 12− log[3]
144

=
11
144

(93)

which is the same as in equation 73.
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12. CAUCHY-SCHWARZ INEQUALITY

12.1. Statement of Inequality. For any functions g(x) and h(x) and cumulative distribu-
tion function F (x),the following holds:∫

g(x)h(x) dF (x) ≤
(∫

g(x)2 dF (x)
) 1

2
(∫

h(x)2 dF (x)
) 1

2

(94)

where x is a vector random variable.

12.2. Proof. Form a linear combination of g(x) and h(x), square it and then integrate as
follows: ∫ (

tg(x) + h(x)
)2

dF (x) ≥ 0 (95)

The inequality holds because of the square and dF (x) > 0. Now expand the integrand
in (95) to obtain

t2
∫ (

g(x)
)2

dF (x) + 2t

∫
g(x)h(x) dF (x) +

∫ (
h(x)

)2
dF (x) ≥ 0 (96)

This is a quadratic equation in t which holds for all t. Now define t as follows:

t =
−
∫

g(x)h(x) dF (x)∫ (
g(x)

)2
dF (x)

(97)

and substitute in (96)(∫
g(x)h(x) dFx)

)2∫ (
g(x)

)2
dF (x)

− 2

(∫
g(x)h(x) dF (x)

)2∫ (
g(x)

)2
dF (x)

+
∫ (

h(x)
)2

dF (x) ≥ 0

⇒ −
(∫

g(x)h(x) dF (x)
)2∫ (

g(x)
)2

dF (x)
≥ −

∫ (
h(x)

)2
dF (x)

⇒
(∫

g(x)h(x) dF (x)
)2

≤
∫ (

h(x)
)2

dF (x)
∫ (

g(x)
)2

dF (x)

⇒
∫ g(x)h(x) dF (x)

 ≤ (∫ (h(x)
)2

dF (x)
) 1

2
(∫ (

gx)
)2

dF (x)
)2

(98)

12.3. Corollary 1. Consider two random variables X1 and X2 and the expectation of their
product. Using (98) we obtain

(
E(X1X2)

)2 ≤ E(X2
1 )E(X2

2 )E (X1X2)
 ≤ (E(X2

1 )
) 1

2
(
E(X2

2 )
) 1

2

(99)
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12.4. Corollary 2.

| cov(X1X2)| <
(
var(X1)

) 1
2
(
var(X2)

) 1
2 (100)

Proof: Apply (98) to the centered random variables g(X) = X1−µ1 and h(X) = X2−µ2

where µi = E(Xi).
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